NEW STANDARD ACADEMY

SEMRI KOTHI SUPER MARKET, RAEBARELI

CLASS 11 (21-05-2024) DPP (Academy)

PHYSICS

Q 5. A particle moves along a semicircle of radius 10m from A to B in 5

(b) $4\pi \ m/s$

(d) $4 \, m/s$

(c) Displacement of the particle is 30 m (d) Average velocity of the particle is zero.

(a) $2\pi \ m/s$

(c) 2 m/s

seconds. The average velocity of the particle is:

PHYSICS		$y = 2t^2 + 3t + 4$. What is the average velocity of the particle from t		
Q 1. A Body moves 6 m north. 8 m east and 10m vertically upwards, what		0 to $t = 3 \sec?$		
is its resultant displacement from initial position:		(a) 3 m/s	(b) 6 m/s	
(a) $10\sqrt{3} \text{ m}$	(b) 10 m	(c) 9 m/s	(d) 12 m/s	
(c) $10 \sqrt{2} \text{ m}$	(d) 20 m	Q 8. Position-time gra	ph of a particle is shown below. What is the average	
Q 2. An athlete completes one round of a circular track of radius R in 40		velocity of the particle between the times $t = 0$ s to $t = 12$ s?		
sec with uniform speed. What will be his displacement at the end of 2 min.		(a) 1.33 m/s	† <i>x</i>	
30 sec?		(b) zero	2 m	
(a) zero	(b) $\sqrt{2R}$	(c) 12 m/s	t	
(c) 5 2 πR	(d) $15\ 2\ \pi R$	(d) -01.33 m/s	0 4s 8s 12s	
Q 3. A car covers the first half of the distance between two places at 40		Q 9. A dog walking to the right with a velocity of 1.5 m/s sees a cat and		
kmph and the other half at 60 kmph. The average speed of the car is:		speeds up with a constant rightward acceleration of magnitude $12 m/s 2$.		
(a) 40 kmph	(b) 48 kmph	What is the velocity of	f the dog after speeding up for 3.0 m?	
(c) 50 kmph	(d) 60 kmph	(a) 4 m/s	(b) 8.6 m/s	
Q 4. A particle is constrained to move on a straight line path. It returns to		(c) 12.6 m/s	(d) 16.6 m/s	
the starting point after 10 sec. The total distance covered by the particle		Q 10. A particle moving in straight line experience constant acceleration		
during this time is 30 m. Which of the following statements about the		for 20 second after starting from rest. If it travel a distance S_1 in the first		
motion of the particle is false?		10 seconds and distance S_2 in the next 10 seconds then find the relation		
(a) Displacement of the particle is zero		between S_1 and S_2 :		
(b) Average speed of the particle is 3 m/s		(a) $S_1 = 3S_2$	(b) $S1 = 3^2 S_2$	

by -

(a) $v = v_1 + v_2^2$

(c) $v = \sqrt{v_2 v_1}$

(c) $S_2 = 3S_1$

Q 6. A passenger travels along a straight line with velocity V_1 for first ha

time and with velocity V_2 for next half time, then the mean speed v is give

(b) $v = \sqrt{v_1 v_2}$

Q 7. A particle's position as a function of time is described as

(d) $2 v = v_1 + v_2$

(d) $S2 = 3^2 S_1$

CHEMISTRY

- 1. A⁺B⁻ and A⁻B⁺ can be formed from elements (A) and (B). Explain their formation based on relative value of (EN),(EA) and (IE).
- 2. Arrange the following compounds in order of their decreasing stabilities: HF,CCl₃,HBr,HI,HCl (Given EN values of elements as below) H=2.1,F=4,Cl=3.0,Br=2.8,I=2.3,N=3.0
- 3. Calculate the electronegativity of chlorine .Given the bond energies of Cl₂=58Kcal/mole,F₂=38 Kcal/mole and Cl-F =61 k cal/mole. Given electronegativity of fluorine is 4.0.
- 4. Ionisation potential and electron affinity of fluorine are 17.42 and 3.45eV respectively .calculate the electronegativity of fluorine on mulliken scale and Pauling scale.
- 5. Which is more electronegative in each pair?
 - a) Ne or F

- b) F or Cl
- 6. Calculate electronegativity of carbon at pauling scales. Given that:

E_{H-H}=104.2 kcal mol⁻¹

E_{C-C}=83.1 kcal mol⁻¹

E_{C-H}=98.8 kcal mol⁻¹

Electronegativity of hydrogen =2.1

- 7. Electronegativity of F on pauling scale is 4.0 Calculate its value on mulliken scale
- 8. Four atoms are arbitrarily labelled D,E,F and G.Their electronegativity are as follows D=3.8 E= 3.3, F= 2.8 and G=1.3.If atoms of these elements form the molcules DE,DG,EG and DF, how would arrange these molecules in order of increasing covalent bond character?
- 9. Arrange the following oxides in order in order of increasing molecular (acidic) character SO₃,Cl₂O₇, CaO and PbO₂
- 10. Give the decreasing order of the basic properties of oxides.
 - a) Tl₂O
- b) Al_2O_3
- c) Tl₂O₃
- D Ga₂O₃

	BIOLOGY					
1.	An amino acid under certain conditions have both positive and negative charges simultaneously in the same molecule. Such a form of amino acid is called					
	a) Acidic form Basic form					
	b) Basic form					
	c) Aromatic from					
	d) Zwitter ionic form					
2.	Which of the following nucleotide is not present in the structure of DNA?					
	a) Adenylic acid	b) Thymidylic acid				
	c) Guanylic acid	d) Uridylic acid				
3.	Which of the following bond is present between the phosphate and					
	hydroxyl group of sugar?					
	a) Hydrogen bond	b) Peptide bond				
	c) Ester bond	d) Glycosidic bond				
4.	A triglyceride has 3 fatty acids. The number of fatty acids in the					
	phospholipid lecithin is					
	a) 2	b) 0				
	c) 3	d) 1				
5.	Following are the examples of secondary metabolites except one. Mark the					
	except one					
	a) Morphine	b) Cellulose				
	c) Carotenoids	d) Cholesterol				
6.	J 1					
	diversity of					
	a) Peptide bonds	b) R groups on amino acids				
	c) Tertiary structure of protein					
_	d) Amino acid sequence of the protein					
7.						
	which one of these is formed?	1) 01				
	a) Maltose	b) Galactose				
	c) Ribose	d) Ribulose				

8. Type of linkage in amylopectin is / are

a) $\alpha 1 - 4$

b) $\alpha 1 - 4, \alpha 1 - 6$

c) $\beta 1 - 4$

d) $\beta 1 - 4, \beta 1 - 6$

9. Mark the odd one:

 a) Adenylic acid c) Uridine Mono p 10. In secondary structure the helical structure throa a) Peptide bonds c) Hydrogen bond 	ough the formation o		ionic bond			
1. The least value of $18 \sin^2 \theta + 2 \csc^2 \theta - 3$ is						
a) -15 b) -	12 c) 0	d) 9				
2. If $\sin^4\alpha + \cos^4\beta +$	$2 = 4\sin\alpha\cos\beta, 0$	$\leq \alpha, \beta \leq \frac{\pi}{2}$, then	$(\sin \alpha +$			
$cos\beta$) is equal to 3. If $tan tan \theta - cot\theta$ 4. $\frac{sin\theta}{1-cot} + \frac{cos\theta}{1-tan\theta}$ a) 0 b) 1	$\theta = 7$, then the v_0	alue of $tan^3\theta - \epsilon$ $- sin\theta d)cos\theta + \epsilon$				
5. The value of $\frac{tan^2}{tan^2}$ a) 1/2 b)1	20°-sin²20°C 20° . sin²20°C) None of			
			these			
6. If $\frac{\sin^2 x - 2\cos^2 x + \sin^2 x + 2\cos^2 x - \cos^2 x}{\sin^2 x + 2\cos^2 x - \cos^2 x}$	$\frac{1}{1}$ = 4 then the value	of $2tan^2x$ is				
a) 3 b)4	,)6			
7. If $\tan\theta - \cos\theta = a$	and $\sin\theta + \cos\theta = 0$	b, then $(b^2-1)^2 (a^2-1)^2$	+4) is equal to			
a) 2 -4	c) <u>±</u> 4) 4			
8. If $\frac{\cos \alpha}{\cos A} + \frac{\sin \alpha}{\sin A} = \frac{\cos \beta}{\cos A} + \frac{\sin \beta}{\sin A} = 1$, where $\alpha \neq \beta$, then $\left \frac{\cos \alpha \cos \beta}{\cos^2 A} + \frac{\sin \alpha \sin \beta}{\sin^2 A} \right =$						
9. The measure of the		•	of a circle of			
radius 100 cm by a a) 12°36' b) 1 10. In a circle of diam the length of mino a) $\frac{10\pi}{3}$ cm b) $\frac{2\pi}{3}$	1°26' c) 13°1 neter 40 cm, the ler r arc of the chord i	.6' d ngth of a chord is s				
a) $-1/\sqrt{3}$ b) 1	$1/\sqrt{3}$	c) $-\sqrt{3}$	$\sqrt{3}$			